Press "Enter" to skip to content

[PDF and VCE] Free Share 400-101 PDF Exam Preparation Materials with CertBus Real Exam Questions

CertBus 2018 Newest Cisco 400-101 CCIE Exam VCE and PDF Dumps for Free Download!

400-101 CCIE Exam PDF and VCE Dumps : 1436QAs Instant Download: https://www.certbus.com/400-101.html [100% 400-101 Exam Pass Guaranteed or Money Refund!!]
☆ Free view online pdf on CertBus free test 400-101 PDF: https://www.certbus.com/online-pdf/400-101.pdf
☆ CertBus 2018 Newest 400-101 CCIE exam Question PDF Free Download from Google Drive Share: https://drive.google.com/file/d/0B_3QX8HGRR1mdEpkTFZvSDJDc2c/view?usp=sharing

Following 400-101 1436QAs are all new published by Cisco Official Exam Center

As a leading IT exam study material provider, CertBus not only provides you the Latest 400-101 pdf exam questions and answers but also the most comprehensive knowledge of the whole CCIE Hotest 400-101 exam questions CCIE Routing and Switching Written v5.0 certifications. We provide our users with the most accurate Hotest 400-101 exam questions CCIE Routing and Switching Written v5.0 study material about the CCIE Nov 17,2018 Latest 400-101 practice exam and the guarantee of pass. We assist you to get well prepared for CCIE Hotest 400-101 pdf certification which is regarded valuable the IT sector.

you are only successful with 400-101 testing engine in your it certification – CertBus! CertBus| 400-101 exam dumps with pdf and vce, 100% pass guaranteed! CertBus- being successful in your 400-101 certification exams with 400-101 exam study guide. 100% pass rate and money back guarantee. CertBus – 100% real 400-101 certification exam questions and answers. easily pass with a high score.

We CertBus has our own expert team. They selected and published the latest 400-101 preparation materials from Cisco Official Exam-Center: https://www.certbus.com/400-101.html

QUESTION NO:2

A branch router is configured with an egress QoS policy that was designed for a total number of

10 concurrent VOIP calls.

Due to expansion, 15 VOIP calls are now running over the link, but after the 14th call was

established, all calls were affected and the voice quality was dramatically degraded.

Assuming that there is enough bandwidth on the link for all of this traffic, which part of the QoS

configuration should be updated due to the new traffic profile?

A. Increase the shaping rate for the priority queue. B.

Remove the policer applied on the priority queue. C.

Remove the shaper applied on the priority queue. D.

Increase the policing rate for the priority queue.

Answer: D

Explanation:


QUESTION NO:8

Which statement is true about loop guard?

A. Loop guard only operates on interfaces that are considered point-to-point by the spanning tree.

B. Loop guard only operates on root ports.

C. Loop guard only operates on designated ports.

D. Loop guard only operates on edge ports.

Answer: A

Explanation:

Explanation

Understanding How Loop Guard Works

Unidirectional link failures may cause a root port or alternate port to become designated as root if

BPDUs are absent. Some software failures may introduce temporary loops in the network. Loop

guard checks if a root port or an alternate root port receives BPDUs. If the port is receiving

BPDUs, loop guard puts the port into an inconsistent state until it starts receiving BPDUs again.

Loop guard isolates the failure and lets spanning tree converge to a stable topology without the

failed link or bridge.

You can enable loop guard per port with the set spantree guard loop command.

Note When you are in MST mode, you can set all the ports on a switch with the set spantree

global-defaults loop-guard command.

When you enable loop guard, it is automatically applied to all of the active instances or VLANs to

which that port belongs. When you disable loop guard, it is disabled for the specified ports.

Disabling loop guard moves all loop-inconsistent ports to the listening state.

If you enable loop guard on a channel and the first link becomes unidirectional, loop guard blocks

the entire channel until the affected port is removed from the channel. Figure 8-6 shows loop

guard in a triangle switch configuration.

Figure 8-6 Triangle Switch Configuration with Loop Guard

Figure 8-6 illustrates the following configuration:

Switches A and B are distribution switches.

Switch C is an access switch.

Loop guard is enabled on ports 3/1 and 3/2 on Switches A, B, and C.

Use loop guard only in topologies where there are blocked ports. Topologies that have no blocked

ports, which are loop free, do not need to enable this feature. Enabling loop guard on a root switch

has no effect but provides protection when a root switch becomes a nonroot switch.

Follow these guidelines when using loop guard:

Do not enable loop guard on PortFast-enabled or dynamic VLAN ports.

Do not enable PortFast on loop guard-enabled ports.

Do not enable loop guard if root guard is enabled.

Do not enable loop guard on ports that are connected to a shared link.

Note: We recommend that you enable loop guard on root ports and alternate root ports on access

switches.

Loop guard interacts with other features as follows:

Loop guard does not affect the functionality of UplinkFast or BackboneFast.

Root guard forces a port to always be designated as the root port. Loop guard is effective only if

the port is a root port or an alternate port. Do not enable loop guard and root guard on a port at the

same time.

PortFast transitions a port into a forwarding state immediately when a link is established. Because

a PortFast-enabled port will not be a root port or alternate port, loop guard and PortFast cannot be

configured on the same port. Assigning dynamic VLAN membership for the port requires that the

port is PortFast enabled. Do not configure a loop guard-enabled port with dynamic VLAN

membership.

If your network has a type-inconsistent port or a PVID-inconsistent port, all BPDUs are dropped

until the misconfiguration is corrected. The port transitions out of the inconsistent state after the

message age expires. Loop guard ignores the message age expiration on type-inconsistent ports

and PVID-inconsistent ports. If the port is already blocked by loop guard, misconfigured BPDUs

that are received on the port make loop guard recover, but the port is moved into the type-

inconsistent state or PVID-inconsistent state.

In high-availability switch configurations, if a port is put into the blocked state by loop guard, it

remains blocked even after a switchover to the redundant supervisor engine. The newly activated

supervisor engine recovers the port only after receiving a BPDU on that port.

Loop guard uses the ports known to spanning tree. Loop guard can take advantage of logical ports

provided by the Port Aggregation Protocol (PAgP). However, to form a channel, all the physical

ports grouped in the channel must have compatible configurations. PAgP enforces uniform

configurations of root guard or loop guard on all the physical ports to form a channel.

These caveats apply to loop guard:


QUESTION NO:10

Which command is used to enable EtherChannel hashing for Layer 3 IP and Layer 4 port-based

CEF?

A. mpls ip cef

B. port-channel ip cef

C. mpls ip port-channel cef

D. port-channel load balance

E. mpls ip load-balance

F. ip cef EtherChannel channel-id XOR L4

G. ip cef connection exchange

Answer: D

Explanation:


QUESTION NO:12

Which two options are contained in a VTP subset advertisement? (Choose two.)

A. followers field

B. MD5 digest

C. VLAN information

D. sequence number

Answer: C,D

Explanation:

Subset Advertisements

When you add, delete, or change a VLAN in a Catalyst, the server Catalyst where the changes are

made increments the configuration revision and issues a summary advertisement. One or several

subset advertisements follow the summary advertisement. A subset advertisement contains a list

of VLAN information.

If there are several VLANs, more than one subset advertisement can be required in order to

advertise all the VLANs.

Subset Advertisement Packet Format

This formatted example shows that each VLAN information field contains information for a different

VLAN. It is ordered so that lowered-valued ISL VLAN IDs occur first:

Most of the fields in this packet are easy to understand. These are two clarifications:

Code


QUESTION NO:16

In 802.1s, how is the VLAN to instance mapping represented in the BPDU?

A. The VLAN to instance mapping is a normal 16-byte field in the MST BPDU.

B. The VLAN to instance mapping is a normal 12-byte field in the MST BPDU.

C. The VLAN to instance mapping is a 16-byte MD5 signature field in the MST BPDU.

D. The VLAN to instance mapping is a 12-byte MD5 signature field in the MST BPDU.

Answer: C

Explanation:

MST Configuration and MST Region

Each switch running MST in the network has a single MST configuration that consists of these

three attributes:

1. An alphanumeric configuration name (32 bytes)

2. A configuration revision number (two bytes)

3. A 4096-element table that associates each of the potential 4096 VLANs supported on the

chassis to a given instance.

In order to be part of a common MST region, a group of switches must share the same

configuration attributes.

It is up to the network administrator to properly propagate the configuration throughout the region.

Currently, this step is only possible by the means of the command line interface (CLI) or through

Simple Network

Management Protocol (SNMP). Other methods can be envisioned, as the IEEE specification does

not explicitly mention how to accomplish that step.

Note: If for any reason two switches differ on one or more configuration attribute, the switches are

part of different regions. For more information refer to the Region Boundary section of this

document.

Region Boundary

In order to ensure consistent VLAN-to-instance mapping, it is necessary for the protocol to be able

to exactly identify the boundaries of the regions. For that purpose, the characteristics of the region

are included in the BPDUs. The exact VLANs-to-instance mapping is not propagated in the BPDU,

because the switches only need to know whether they are in the same region as a neighbor.

Therefore, only a digest of the VLANs-toinstance mapping table is sent, along with the revision

number and the name. Once a switch receives a BPDU, the switch extracts the digest (a

numerical value derived from the VLAN-to-instance mapping table through a mathematical

function) and compares this digest with its own computed digest. If the digests differ, the port on

which the BPDU was received is at the boundary of a region.

In generic terms, a port is at the boundary of a region if the designated bridge on its segment is in

a different region or if it receives legacy 802.1d BPDUs. In this diagram, the port on B1 is at the

boundary of region A, whereas the ports on B2 and B3 are internal to region B:

MST Instances

According to the IEEE 802.1s specification, an MST bridge must be able to handle at least these

two instances:

One Internal Spanning Tree (IST)

One or more Multiple Spanning Tree Instance(s) (MSTIs)

The terminology continues to evolve, as 802.1s is actually in a pre-standard phase. It is likely

these names will change in the final release of 802.1s. The Cisco implementation supports 16

instances: one IST (instance 0) and 15 MSTIs.

show vtp status

Cisco switches “show vtp status” Field Descriptions has a MD5 digest field that is a 16-byte

checksum of the

VTP configuration as shown below

Router# show vtp status

VTP Version: 3 (capable)

Configuration Revision: 1

Maximum VLANs supported locally: 1005

Number of existing VLANs: 37

VTP Operating Mode: Server

VTP Domain Name: [smartports]

VTP Pruning Mode: Disabled

VTP V2 Mode: Enabled

VTP Traps Generation: Disabled

MD5 digest : 0x26 0xEE 0x0D 0x84 0x73 0x0E 0x1B 0x69

Configuration last modified by 172.20.52.19 at 7-25-08 14:33:43

Local updater ID is 172.20.52.19 on interface Gi5/2 (first layer3 interface fou)

VTP version running: 2

Reference

http://www.cisco.com/en/US/tech/tk389/tk621/technologies_white_paper09186a0080094cfc.shtml

http://www.cisco.com/en/US/docs/ios-xml/ios/lanswitch/command/lsw-cr-book.pdf


400-101 PDF Dumps400-101 VCE Dumps400-101 Practice Test

QUESTION NO:22

Refer to the exhibit.

Which path is selected as best path?

A. path 1, because it is learned from IGP B.

path 1, because the metric is the lowest C.

path 2, because it is external

D. path 2, because it has the higher router ID

Answer: B

Explanation:


QUESTION NO:23

What action will a BGP route reflector take when it receives a prefix marked with the community

attribute NO ADVERTISE from a client peer?

A. It will advertise the prefix to all other client peers and non-client peers.

B. It will not advertise the prefix to EBGP peers.

C. It will only advertise the prefix to all other IBGP peers.

D. It will not advertise the prefix to any peers.

Answer: D

Explanation:


QUESTION NO:29

What is the first thing that happens when IPv6 is enabled on an interface on a host?

A. A router solicitation is sent on that interface.

B. There is a duplicate address detection on the host interface.

C. The link local address is assigned on the host interface.

D. A neighbor redirect message is sent on the host interface.

Answer: B

Explanation:

Duplicate address detection (DAD) is used to verify that an IPv6 home address is unique on the

LAN before assigning the address to a physical interface (for example, QDIO). z/OS

Communications Server responds to other nodes doing DAD for IP addresses assigned to the

interface.

Reference

http://publib.boulder.ibm.com/infocenter/zos/v1r12/index.jsp?topic=/com.ibm.zos.r12.hale001

/ipv6d0021002145.htm


QUESTION NO:30

What is the flooding scope of an OSPFv3 LSA, if the value of the S2 bit is set to 1 and the S1 bit is

set to 0?

A. link local

B. area wide

C. AS wide

D. reserved

Answer: C

Explanation:

The Type 1 router LSA is now link local and the Type 2 Network LSA is AS Wide

S2 and S1 indicate the LSA\’s flooding scope. Table 9-1 shows the possible values of these two

bits and the associated flooding scopes.

Table 9-1 S bits in the OSPFv3 LSA Link State Type field and their associated flooding scopes

LSA Function Code, the last 13 bits of the LS Type field, corresponds to the OSPFv2 Type field.

Table 9-2 shows the common LSA types used by OSPFv3 and the values of their corresponding

LS Types. If you decode the hex values, you will see that the default U bit of all of them is 0. The S

bits of all LSAs except two indicate area scope. Of the remaining two, AS External LSAs have an

AS flooding scope and Link LSAs have a linklocal flooding scope. Most of the OSPFv3 LSAs have

functional counterparts in OSPFv2; these OSPFv2 LSAs and their types are also shown in Table

9-2.

Table 9-2 OSPFv3 LSA types and their OSPFv2 counterparts

Reference

http://www.networkworld.com/subnets/cisco/050107-ch9-ospfv3.html?page=1


QUESTION NO:32

Which two tunneling techniques support IPv6 multicasting? (Choose two.)

A. 6to4

B. 6over4

C. ISATAP

D. 6PE

E. GRE

Answer: B,E

Explanation:

When IPv6 multicast is supported (over a 6to4 tunnel), an IPv6 multicast routing protocol must be

used

Restrictions for Implementing IPv6 Multicast

IPv6 multicast for Cisco IOS software uses MLD version 2. This version of MLD is fully backward-

compatible with MLD version 1 (described in RFC 2710). Hosts that support only MLD version 1

will interoperate with a router running MLD version 2. Mixed LANs with both MLD version 1 and

MLD version 2 hosts are likewise supported.

IPv6 multicast is supported only over IPv4 tunnels in Cisco IOS Release 12.3(2)T, Cisco IOS

Release 12.2

(18)S, and Cisco IOS Release 12.0(26)S.

When the bidirectional (bidir) range is used in a network, all routers in that network must be able to

understand the bidirectional range in the bootstrap message (BSM).

IPv6 multicast routing is disabled by default when the ipv6 unicast-routing command is configured.

On Cisco Catalyst 6500 and Cisco 7600 series routers, the ipv6 multicast-routing also must be

enabled in order to use IPv6 unicast routing

Reference http://www.cisco.com/web/about/ac123/ac147/ac174/ac197/

about_cisco_ipj_archive_article09186a00800c830a.html

http://www.cisco.com/en/US/docs/ios/ipv6/configuration/guide/ip6-multicast.html

https://supportforums.cisco.com/thread/183386


CertBus exam braindumps are pass guaranteed. We guarantee your pass for the 400-101 exam successfully with our Cisco materials. CertBus CCIE Routing and Switching Written v5.0 exam PDF and VCE are the latest and most accurate. We have the best Cisco in our team to make sure CertBus CCIE Routing and Switching Written v5.0 exam questions and answers are the most valid. CertBus exam CCIE Routing and Switching Written v5.0 exam dumps will help you to be the Cisco specialist, clear your 400-101 exam and get the final success.

400-101 Latest questions and answers on Google Drive(100% Free Download): https://drive.google.com/file/d/0B_3QX8HGRR1mdEpkTFZvSDJDc2c/view?usp=sharing

400-101 Cisco exam dumps (100% Pass Guaranteed) from CertBus: https://www.certbus.com/400-101.html [100% Exam Pass Guaranteed]

Why select/choose CertBus?

Millions of interested professionals can touch the destination of success in exams by certbus.com. products which would be available, affordable, updated and of really best quality to overcome the difficulties of any course outlines. Questions and Answers material is updated in highly outclass manner on regular basis and material is released periodically and is available in testing centers with whom we are maintaining our relationship to get latest material.

Brand Certbus Testking Pass4sure Actualtests Others
Price $45.99 $124.99 $125.99 $189 $69.99-99.99
Up-to-Date Dumps
Free 365 Days Update
Real Questions
Printable PDF
Test Engine
One Time Purchase
Instant Download
Unlimited Install
100% Pass Guarantee
100% Money Back
Secure Payment
Privacy Protection
         

Be First to Comment

Leave a Reply