All4Certs Cisco Archive,Exam Archive Pass Guarantee 400-101 Exam By Taking CertBus New Cisco 400-101 VCE And PDF Braindumps

Pass Guarantee 400-101 Exam By Taking CertBus New Cisco 400-101 VCE And PDF Braindumps

CertBus 2018 Valid Cisco 400-101 CCIE Exam VCE and PDF Dumps for Free Download!

400-101 CCIE Exam PDF and VCE Dumps : 1436QAs Instant Download: https://www.certgod.com/400-101.html [100% 400-101 Exam Pass Guaranteed or Money Refund!!]
☆ Free view online pdf on CertBus free test 400-101 PDF: https://www.certgod.com/online-pdf/400-101.pdf
☆ CertBus 2018 Valid 400-101 CCIE exam Question PDF Free Download from Google Drive Share: https://drive.google.com/file/d/0B_3QX8HGRR1mdEpkTFZvSDJDc2c/view?usp=sharing

Following 400-101 1436QAs are all new published by Cisco Official Exam Center

CCIE Latest 400-101 pdf easy pass guidance: Preparing for Cisco CCIE Latest 400-101 study guide exam is really a tough task to achieve. However, CertBus provides the most comprehensive PDF and VCEs, covering each knowledge points required in the actual Nov 28,2018 Hotest 400-101 pdf exam.

CertBus – help you to get your 400-101 certification more easily. save your time and money! high pass rate! get your 400-101 certification easily. CertBus expert team is ready to help you. CertBus: best 400-101 certification material provider are cheapest in the market! CertBus – your reliable partner and professional 400-101 certification exam material provider.

We CertBus has our own expert team. They selected and published the latest 400-101 preparation materials from Cisco Official Exam-Center: https://www.certgod.com/400-101.html

QUESTION NO:3

A new backup connection is being deployed on a remote site router. The stability of the connection

has been a concern. In order to provide more information to EIGRP regarding this interface, you

wish to incorporate the “reliability” cost metric in the EIGRP calculation with the command metric

weights 1 0 1 0 1.

What impact will this modification on the remote site router have for other existing EIGRP

neighborships from the same EIGRP domain?

A. Existing neighbors will immediately begin using the new metric.

B. Existing neighbors will use the new metric after clearing the EIGRP neighbors.

C. Existing neighbors will resync, maintaining the neighbor relationship.

D. All existing neighbor relationships will go down.

Answer: D

Explanation:


QUESTION NO:5

Refer to the exhibit.

A small enterprise connects its office to two ISPs, using separate T1 links. A static route is used

for the default route, pointing to both interfaces with a different administrative distance, so that one

of the default routes is preferred.

Recently the primary link has been upgraded to a new 10 Mb/s Ethernet link.

After a few weeks, they experienced a failure. The link did not pass traffic, but the primary static

route remained active. They lost their Internet connectivity, even though the backup link was

operating.

Which two possible solutions can be implemented to avoid this situation in the future? (Choose

two.)

A. Implement HSRP link tracking on the branch router R1.

B. Use a track object with an IP SLA probe for the static route on R1.

C. Track the link state of the Ethernet link using a track object on R1.

D. Use a routing protocol between R1 and the upstream ISP.

Answer: B,D

Explanation:

Interface Tracking

Interface tracking allows you to specify another interface on the router for the HSRP process to

monitor in order to alter the HSRP priority for a given group.

If the specified interface’s line protocol goes down, the HSRP priority of this router is reduced,

allowing another HSRP router with higher priority can become active (if it has preemption

enabled).

To configure HSRP interface tracking, use the standby [group] track interface [priority] command.

When multiple tracked interfaces are down, the priority is reduced by a cumulative amount. If you

explicitly set the decrement value, then the value is decreased by that amount if that interface is

down, and decrements are cumulative. If you do not set an explicit decrement value, then the

value is decreased by 10 for each interface that goes down, and decrements are cumulative.

The following example uses the following configuration, with the default decrement value of 10.

Note: When an HSRP group number is not specified, the default group number is group 0.

interface ethernet0

ip address 10.1.1.1 255.255.255.0

standby ip 10.1.1.3

standby priority 110

standby track serial0

standby track serial1

The HSRP behavior with this configuration is:

0 interfaces down = no decrease (priority is 110)

1 interface down = decrease by 10 (priority becomes100)

2 interfaces down = decrease by 10 (priority becomes 90)

Reference

http://www.cisco.com/en/US/tech/tk648/tk362/technologies_tech_note09186a0080094a91.shtml#i

ntracking


QUESTION NO:19

Which two options does Cisco PfR use to control the entrance link selection with inbound

optimization? (Choose two.)

A. Prepend extra AS hops to the BGP prefix.

B. Advertise more specific BGP prefixes (longer mask).

C. Add (prepend) one or more communities to the prefix that is advertised by BGP.

D. Have BGP dampen the prefix.

Answer: A,C

Explanation: PfR Entrance Link Selection Control Techniques

The PfR BGP inbound optimization feature introduced the ability to influence inbound traffic. A

network advertises reachability of its inside prefixes to the Internet using eBGP advertisements to

its ISPs. If the same prefix is advertised to more than one ISP, then the network is multihoming.

PfR BGP inbound optimization works best with multihomed networks, but it can also be used with

a network that has multiple connections to the same ISP. To implement BGP inbound

optimization, PfR manipulates eBGP advertisements to influence the best entrance selection for

traffic bound for inside prefixes. The benefit of implementing the best entrance selection is limited

to a network that has more than one ISP connection.

To enforce an entrance link selection, PfR offers the following methods:

BGP Autonomous System Number Prepend When an entrance link goes out-of-policy (OOP) due

to delay, or in images prior to Cisco IOS Releases 15.2(1) T1 and 15.1(2)S, and PfR selects a

best entrance for an inside prefix, extra autonomous system hops are prepended one at a time (up

to a maximum of six) to the inside prefix BGP advertisement over the other entrances. In Cisco

IOS Releases 15.2(1)T1, 15.1(2)S, and later releases, when an entrance link goes out-of policy

(OOP) due to unreachable or loss reasons, and PfR selects a best entrance for an inside prefix,

six extra autonomous system hops are prepended immediately to the inside prefix BGP

advertisement over the other entrances. The extra autonomous system hops on the other

entrances increase the probability that the best entrance will be used for the inside prefix. When

the entrance link is OOP due to unreachable or loss reasons, six extra autonomous system hops

are added immediately to allow the software to quickly move the traffic away from the old entrance

link. This is the default method PfR uses to control an inside prefix, and no user configuration is

required.

BGP Autonomous System Number Community Prepend

When an entrance link goes out-of-policy (OOP) due to delay, or in images prior to Cisco IOS

Releases 15.2

(1)T1 and 15.1(2)S, and PfR selects a best entrance for an inside prefix, a BGP prepend

community is attached one at a time (up to a maximum of six) to the inside prefix BGP

advertisement from the network to another autonomous system such as an ISP. In Cisco IOS

Releases 15.2(1)T1, 15.1(2)S, and later releases, when an entrance link goes out-of-policy (OOP)

due to unreachable or loss reasons, and PfR selects a best entrance for an inside prefix, six BGP

prepend communities are attached to the inside prefix BGP advertisement. The BGP prepend

community will increase the number of autonomous system hops in the advertisement of the

inside prefix from the ISP to its peers. Autonomous system prepend BGP community is the

preferred method to be used for PfR BGP inbound optimization because there is no risk of the

local ISP filtering the extra autonomous system hops. There are some issues, for example, not all

ISPs support the BGP prepend community, ISP policies may ignore or modify the autonomous

system hops, and a transit ISP may filter the autonomous system path. If you use this method of

inbound optimization and a change is made to an autonomous system, you must issue an

outbound reconfiguration using the “clear ip bgp” command.

Reference

http://www.cisco.com/en/US/docs/ios-xml/ios/pfr/configuration/15-2s/pfr-bgp-inbound.html#GUID-

F8A59E241D59-

4924-827D-B23B43D9A8E0

http://www.cisco.com/en/US/products/ps8787/products_ios_protocol_option_home.html


QUESTION NO:21

Refer to the exhibit.

A packet from RTD with destination RTG, is reaching RTB. What is the path this packet will take

from RTB to reach RTG?

A. RTB – RTA – RTG

B. RTB – RTD – RTC – RTA – RTG

C. RTB – RTF – RTE – RTA – RTG

D. RTB will not be able to reach RTG since the OSPF configuration is wrong.

Answer: C

Explanation:


QUESTION NO:22

Refer to the exhibit.

Which path is selected as best path?

A. path 1, because it is learned from IGP B.

path 1, because the metric is the lowest C.

path 2, because it is external

D. path 2, because it has the higher router ID

Answer: B

Explanation:


400-101 VCE Dumps400-101 Study Guide400-101 Exam Questions

QUESTION NO:28

Which two orders in the BGP Best Path Selection process are correct? (Choose two.)

A. Higher local preference, then lowest MED, then eBGP over iBGP paths

B. Higher local preference, then highest weight, then lowest router ID

C. Highest weight, then higher local preference, then shortest AS path

D. Lowest origin type, then higher local preference, then lowest router ID

E. Highest weight, then higher local preference, then highest MED

Answer: A,C

Explanation:


QUESTION NO:31

How will EIGRPv6 react if there is an IPv6 subnet mask mismatch between the Global Unicast

addresses on a point-to-point link?

A. EIGRPv6 will form a neighbor relationship.

B. EIGRPv6 will not form a neighbor relationship.

C. EIGRPv6 will form a neighbor relationship, but with the log MSG: “EIGRPv6 neighbor not on a

common subnet.”

D. EIGRPv6 will form a neighbor relationship, but routes learned from that neighbor will not be

installed in the routing table.

Answer: A Explanation:

http://www.ietf.org/rfc/rfc3587.txt


QUESTION NO:33

Which two OSPF LSA types are new in OSPF version 3? (Choose two.)

A. Link

B. NSSA external

C. Network link

D. Intra-area prefix

E. AS domain

Answer: A,D

Explanation:

New LSA Types

OSPFv3 carries over the seven basic LSA types we’re familiar with from OSPFv2. However, the

type 1 and 2 LSAs have been re-purposed, as will be discussed in a bit. OSPFv3 also introduces

two new LSA types: Link and Intra-area Prefix.

Reference

http://packetlife.net/blog/2010/mar/2/ospfv2-versus-ospfv3/


QUESTION NO:36

For which routes does LDP advertise a label binding?

A. all routes in the routing table

B. only the IGP and BGP routes in the routing table

C. only the BGP routes in the routing table

D. only the IGP routes in the routing table

Answer: D

Explanation:


QUESTION NO:39

Which two statements are correct about Nonstop Forwarding? (Choose two.)

A. It allows the standby RP to take control of the device after a hardware or software fault on the

active RP.

B. It is a Layer 3 function that works with SSO to minimize the amount of time a network is

unavailable to users following a switchover.

C. It is supported by the implementation of EIGRP, OSPF, RIPv2, and BGP protocols.

D. It synchronizes startup configuration, startup variables, and running configuration.

E. The main objective of NSF is to continue forwarding IP packets following a switchover.

F. Layer 2 802.1w or 802.1s must be used, as 802.1d cannot process the Layer 2 changes.

G. Routing protocol tuning parameters must be the same as the NSF parameters, or failover will

be inconsistent.

Answer: B,E

Explanation: Explanation

Cisco Nonstop Forwarding (NSF) works with the Stateful Switchover (SSO) feature in Cisco IOS

software. NSF works with SSO to minimize the amount of time a network is unavailable to its

users following a switchover. The main objective of Cisco NSF is to continue forwarding IP

packets following a Route Processor (RP) switchover.

Reference

http://www.cisco.com/en/US/docs/ios/12_2s/feature/guide/fsnsf20s.html


CertBus exam braindumps are pass guaranteed. We guarantee your pass for the 400-101 exam successfully with our Cisco materials. CertBus CCIE Routing and Switching Written v5.0 exam PDF and VCE are the latest and most accurate. We have the best Cisco in our team to make sure CertBus CCIE Routing and Switching Written v5.0 exam questions and answers are the most valid. CertBus exam CCIE Routing and Switching Written v5.0 exam dumps will help you to be the Cisco specialist, clear your 400-101 exam and get the final success.

400-101 Latest questions and answers on Google Drive(100% Free Download): https://drive.google.com/file/d/0B_3QX8HGRR1mdEpkTFZvSDJDc2c/view?usp=sharing

400-101 Cisco exam dumps (100% Pass Guaranteed) from CertBus: https://www.certgod.com/400-101.html [100% Exam Pass Guaranteed]

Why select/choose CertBus?

Millions of interested professionals can touch the destination of success in exams by certgod.com. products which would be available, affordable, updated and of really best quality to overcome the difficulties of any course outlines. Questions and Answers material is updated in highly outclass manner on regular basis and material is released periodically and is available in testing centers with whom we are maintaining our relationship to get latest material.

BrandCertbusTestkingPass4sureActualtestsOthers
Price$45.99$124.99$125.99$189$69.99-99.99
Up-to-Date Dumps
Free 365 Days Update
Real Questions
Printable PDF
Test Engine
One Time Purchase
Instant Download
Unlimited Install
100% Pass Guarantee
100% Money Back
Secure Payment
Privacy Protection

Leave a Reply

Your email address will not be published. Required fields are marked *